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Abstract A methodology is proposed for studying rare events in stochastic partial differen-
tial equations in systems that are so large that standard large deviation theory does not apply.
The idea is to deduce the behavior of the original model by breaking the system into appro-
priately scaled subsystems that are sufficiently small for large deviation theory to apply but
sufficiently large to be asymptotically independent from one another. The methodology is
illustrated in the context of a simple one-dimensional stochastic partial differential equation.
The application reveals a connection between the dynamics of the partial differential equa-
tion and the classical Johnson–Mehl–Avrami–Kolmogorov nucleation and growth model. It
also illustrates that rare events are much more likely and predictable in large systems than
in small ones due to the extra entropy provided by space.

Keywords Rare events · Metastability · Nucleation · Phase transformation · Small noise ·
Large deviation theory · Spatially extended system · Stochastic partial differential equation

1 Introduction

This paper is motivated by the physical problem of metastability and phase separation, and
an interest in quantifying the effects of nucleation and growth in stochastically perturbed
reaction diffusion systems. Familiar examples of metastability include the condensation of
supercooled vapor and the phase separation of a binary alloy; for a nice discussion and
experimental pictures see for instance [27, 40]. In contrast to spinodal decomposition, in
which a system evolves from a deterministically unstable state towards an energy minimum,
metastability refers to a system that starts in a deterministically stable state and evolves, due
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to thermal noise, towards the global energy minimum. Put differently, metastability involves
crossing an energy barrier. Because the timescale for crossing the energy barrier is typically
large, the initial state of the system persists for a long time; hence the name metastable.

The size of the system is critical in determining the pathway of a metastable system. It is
well known that in small systems, a single droplet pathway dominates; many small droplets
form and disappear until eventually a large fluctuation leads to the formation of one so-called
critical droplet or critical nucleus which then grows to take over the system. However it is
in large systems that the spatial extent of the system comes into play and a multiple droplet
pathway dominates [46, 50]. Nucleation and growth in physical systems typically resembles
the multiple droplet regime [27, 40].

Mathematically, there are two main branches of the study of stochastic metastability: the
microscopic approach that studies spin systems and the macroscopic approach that stud-
ies stochastically perturbed differential equations. Significant progress has been made in
the microscopic branch: The multiple droplet regime of metastability has been analyzed in
[16, 47, 48]; see also [18, 19, 25] for analysis of nontrivial spatial structure in the case of
relaxation from a deterministically unstable state.

In contrast, in the macroscopic branch the multiple droplet regime is yet to be investi-
gated. Before going further, let us introduce the macroscopic model on which we will focus;
see also Remark 1.

1.1 A Ginzburg–Landau Model

The simplest macroscopic model is the “Model A” reaction diffusion equation

u̇ = uxx − V ′(u), (1.1)

where u : [0, T ] × [−L,L] → R is the scalar order parameter, u̇ represents the time deriv-
ative of u, and V is a double-well potential with minima u− < u+. Notice that “Model A”
does not conserve the order parameter, in contrast to “Model B,” according to the classifica-
tion of Halperin and Hohenberg [28]; see also Remark 1 below. The stochastically perturbed
version of (1.1) is

u̇ = uxx − V ′(u) + √
2εη, (1.2)

where η is a space-time white noise and ε is the noise intensity, the inverse of the dimen-
sionless temperature.

Reaction diffusion equations such as (1.1) have been obtained as limits of microscopic
models [6, 17]. They have also been used broadly as phenomenological models, including
for instance to model chemical reactions, population dynamics, and wave propagation [20].
Qualitatively, the salient feature of (1.1) is that it is the gradient flow (with respect to L2) of
the Ginzburg–Landau energy

∫ L

−L

(
1

2
u2

x + V (u)

)
dx. (1.3)

Therefore solutions tend toward minima of (1.3), which prefer to be constant in space (to
keep gradients small) and prefer to take values u− and u+ (to minimize the bulk energy
from V (·)). If boundary conditions permit, the unique energy minimizers are the functions
u ≡ u− and u ≡ u+.
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The well-known Allen Cahn equation is (1.1) with a symmetric potential, often written
as

V0(u) = 1

4
(1 − u2)2.

However we will be mainly concerned with the case of an asymmetric potential. Asymmetric
potentials arise for instance when there is an external field:

V (u) = V0(u) − hu.

In this case u ≡ u− is a local energy minimizer, but the unique global energy minimizer is
u ≡ u+. We note for future reference that the deterministic PDE with unequal well potential
has a “critical nucleus” even in an infinite system, which means, roughly speaking, that the
L → ∞ limit of the diameter of the lowest-energy saddle point exists. (Strictly speaking,
in the Allen Cahn equation there is no critical nucleus in an unbounded system since the
diameter of the lowest-energy saddle point becomes infinite as L → ∞.)

The stochastic term in (1.2) reflects small scale noise that perturbs the deterministic dy-
namics. The noise gives rise to metastability: If the system starts at the local energy mini-
mizer u(0, ·) = u−, then the solution will exhibit small fluctuations around this state until a
large deviation drives the system over the energy barrier and into a small neighborhood of the
global minimizer u ≡ u+. (In any bounded system the solution will eventually switch back
to a neighborhood of the local minimizer, but since the expected lifetime near the global
minimizer is exponentially longer than that near the local minimizer, the local minimizer
is referred to as the metastable state and the global minimizer is often called, somewhat
misleadingly, the stable state.)

1.2 Metastability in Stochastic PDE

The celebrated large deviation theory of Freidlin and Wentzell [23] provides a rigorous
mathematical analysis of metastability in finite dimensional (ODE) systems. Freidlin–
Wentzell theory generalizes naturally to infinite dimensional (PDE) systems. The classic
paper [22] analyzes metastability in the stochastically perturbed Allen Cahn equation. An-
other important paper is [38], which analyzes the expected value of the time to switch from
one energy minimizer to a neighborhood of the other and proves that, on this timescale, the
exit probability is exponentially distributed in time. See also [14, 15] for general theory in
infinite dimensions.

All of these results, however, concern the “single droplet” regime of stochastic PDE.
More precisely, (1.2) is studied on the fixed space domain [−L,L] in the zero noise limit:
ε → 0. Very little is known about (1.2) on the space domain [−Lε,Lε] in the limit with
Lε → ∞ as ε → 0. One extension is [12], in which it is shown that for (1.2) with an asym-
metric potential, as long as Lε does not grow too quickly as ε → 0, the single droplet picture
of Freidlin–Wentzell theory is preserved.

The multiple droplet regime of (1.2) is precisely the regime in which Lε grows suffi-
ciently quickly as ε → 0. One result that is independent of the system size is [45], in which
it is shown that the invariant measure of (1.2) with Dirichlet boundary conditions is equiv-
alent to the law of a bridge process with a modified potential. For small noise, it suggests
that in the case of an asymmetric potential with V (u−) > V (u+), the invariant measure will
be supported on functions u ≈ u+. What about the metastable dynamics? The intuition is
that in a large system, the sheer number of possible nucleation locations should be impor-
tant. Indeed, although a nucleation event is exponentially unlikely with respect to ε−1, if the
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system is exponentially large with respect to ε−1, then finding a nucleation somewhere in
the system is likely. As a result, rather than being dominated by a single most likely path-
way, phase transformation is most likely to occur via multiple nucleations that are randomly
distributed in space and time.

A fundamental question is: How can we derive the distribution of the multiple, random
nucleation events in the large system setting? There are also properties of the transformation
that we would like to quantify and understand. For instance, one expects the multiple nu-
cleations to lead to a transformation time-scale (e.g., the time for an nth of the system to be
transformed) that is much shorter than if the transformation were generated by a single nu-
cleation. Moreover, in the large system limit, deterministic properties should emerge: Each
nucleation is a rare event, but the net behavior is governed by the law of large numbers.

In this paper, we suggest a framework to study rare events in large systems by considering
subsystems that are small enough so that prefactor estimates for the mean nucleation time
can be derived, but large enough that the behavior on different subsystems is asymptotically
independent. To derive reduced dynamics, the dynamics of the deterministic PDE (1.1) will
be important. We study the case of an asymmetric potential precisely because—in addition
to yielding a critical radius—the deterministic dynamics following the formation of a critical
droplet is simple. Indeed, interfaces connecting u ≈ u− and u ≈ u+ are formed which then
spread with a finite travelling wave velocity [8]. See also Remark 2 below.

Our method will require an estimate—including the prefactor—for the nucleation rate
��ε

ε on a subsystem of scale �ε with �ε � ln ε−1. This is a question of independent interest.
Prefactor estimates have been well studied (see for instance [7, 32–34, 36, 39, 49] and the
references therein), but the usual estimate breaks down in our scaling. The entropic effect of
the subsystem size leads to an �ε dependence in the prefactor:

��ε
ε ∝ �εε

−1/2 exp(−�E�ε/ε), (1.4)

where �E�ε denotes the energy barrier for the subsystem. The scaling in (1.4) has been
observed before [10, 26, 34, 35, 39]; we give a new derivation using formal asymptotics
and the Co-area Formula. (See Sect. 2.2 for details.) Estimating ��

ε represents an infinite-
dimensional version of a degenerate escape rate problem, i.e., estimating the escape rate for
a particle out of a potential well for which the saddle point is not an isolated point. Recently
capacities have proven useful in the analysis of escape rate problems [7, 21]. Although
prefactor estimates for nondegenerate potentials in the finite dimensional case have only
recently been proven rigorously in [7], the method of capacities used there seems natural for
an extension to infinite dimensions.

In Sect. 2 we review the rate problem and its long history, and derive the generaliza-
tion (2.7), (2.8). Then in Sect. 3, we apply the nucleation rate estimate to study phase trans-
formation in (1.2). Taking appropriate limits, we reduce the spatially-distributed phase trans-
formation to a simple version of the Johnson–Mehl–Avrami–Kolmogorov (JMAK) model
[4, 11, 30, 31]. Here, the new contribution is the connection between the SPDE and the
JMAK model which, as we explain, allows one to observe and quantify the drastically
reduced transformation time-scale and the deterministic limiting behavior that emerge for
large systems.

Remark 1 Of course, in addition to (1.1) there are many other physically relevant and math-
ematically interesting models. In higher space dimensions, the Allen Cahn equation

u̇ = �u − V ′
0(u)
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is a phase field approximation of motion of interfaces by mean curvature. The fourth order
Cahn Hilliard equation

u̇ = −�(�u − V ′
0(u))

conserves the mean value of the order parameter (a “Model B” equation). In this paper we
focus on one example. Equation (1.1) with an asymmetric double-well potential is simple
enough to allow a thorough analysis: The asymmetry leads to (1) a critical droplet size and
(2) the deterministic spreading of the new phase once a critical droplet has formed. The
framework we propose, however, is more general and may be applied to other models.

Remark 2 The dynamics of kink motion in the stochastic Allen Cahn equation (symmetric
potential) is analyzed in [9, 24]. It is proved that in the sharp interface limit, the dynamics of
a kink reduces to the diffusive motion of a single point. One would also like to understand
rare events in the Allen Cahn equation, i.e., given initial data u ≡ −1, how do kinks form?
However even the limit picture is not clear. Kinks should reduce to diffusive points that
annihilate upon collision, but Brownian motions started at the same point cross infinitely
often before separating. The nonzero drift in the case of the asymmetric potential makes
that case easier.

2 Escape Rate in Degenerate Potentials

The study of the rate of escape from a stable state goes back to Arrhenius [3] for the chemical
reaction rate. In the nondegenerate case—i.e., the case in which one considers escape from
an isolated minimum of the potential, there is a unique energy-minimizing saddle point
on the boundary of its basin of attraction, and the Hessians of the energy at the minimum
and the saddle point have no zero eigenvalue—the problem was analyzed for d = 1 in [32]
and d > 1 in [33, 36, 39, 49]. Recently, the rate estimate was derived as a mathematically
rigorous result in [7]. For the nondegenerate, infinite-dimensional case, we refer the reader
to [14, 15, 38].

We are interested in the case that is degenerate in the sense that the minimum of V on
the boundary ∂D is not an isolated point. Estimates for the escape rate in the degenerate
case were introduced as early as [26], and have been developed in [10, 34, 35, 39]. The
most important difference from the estimate in the nondegenerate case is the appearance of
an extra volume factor, the volume of the subspace corresponding to the degenerate saddle
point. In this section, we give a new derivation of the escape rate in the degenerate case in
order to obtain (2.7) and (2.8), which reduce to the estimates in [34, 35] under simplifying
assumptions (cf. Remark 3). We consider the finite dimensional case in Sect. 2.1 and then
interpret our result in the infinite dimensional setting in Sect. 2.2.

2.1 Finite Dimensional Setting

We consider the stochastically perturbed gradient flow

dXt = −∇V (Xt) dt + √
2ε dWt , X0 = x, (2.1)

where Wt ∈ R
N is an N -dimensional Brownian motion. We suppose that V : R

N → R is
a potential with an isolated, nondegenerate minimum at xm. We denote by D the basin of
attraction of xm, i.e.

D = {
x | limt→∞ z(t) = xm where ż = −∇V (z) with z(0) = x

}
, (2.2)
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and we wish to analyze the problem of first exit out of D by the process defined in (2.1).
More precisely, we wish to analyze the properties of the first exit time

τε(x) = inf{t | Xt �∈ D, X0 = x ∈ D}. (2.3)

As ε → 0, the escape from D can be represented asymptotically as a Poisson process with
intensity �ε :

lim
ε→0

P(�ετε(x) ≥ s > 0) = e−s for any x ∈ D, (2.4)

where

�ε =
√

ε

2π

∫
∂D

|〈n̂(x),H(x)n̂(x)〉|1/2 exp(−V (x)/ε) dσ∫
D

exp(−V (x)/ε) dx
. (2.5)

Here H(x) is the Hessian of V (x), n̂(x) denotes the outward normal to ∂D at point x ∈ ∂D,
and dσ is the surface measure on ∂D. Equations (2.4) and (2.5) can be derived by formal
asymptotics [36]. (See also the Appendix B of [2]. They consider the nongradient case and
derive a more general formula that reduces to (2.5) in the gradient case (2.1).) A rigorous
derivation of (2.4) for �ε of the correct exponential order has been given in [38].

For a nondegenerate potential, the main contribution to the integral in the denominator
of (2.5) comes from the point xm ∈ D where V is minimized, and the main contribution
to the integral in the numerator comes from the point of minimum energy on ∂D (i.e., the
lowest energy saddle point). Expanding V to second order around the respective critical
points leads to

�ε = (C + o(1)ε→0) exp(−�V/ε) with C = 1

2π

√|λs
1|λm

1

N∏
j=2

√
λm

j

λs
j

, (2.6)

where λs
j and λm

j are the eigenvalues of the Hessian of the energy at the saddle and minimum,
arranged in ascending order. This is called the harmonic expansion. Note that the factor
|〈n̂(x),H(x)n̂(x)〉| contributes |λs

1|, the magnitude of the unique negative eigenvalue of the
Hessian at the saddle point.

When the potential is degenerate, the harmonic expansion leading to (2.6) is not valid.
Suppose that instead of being peaked at a single point on ∂D, exp(−V/ε) is peaked at a
continuum of energy-minimizing saddle points

S := argminx∈∂DV (x),

all of which contribute to the denominator in (2.5). We assume for simplicity that S is a
manifold without boundary, and parameterize the set as

S = {γ (θ) ; θ ∈ [0,1]d}.
We claim that in this case, (2.5) can be reduced to

�ε = (
C̄ε + o(ε−d/2)

)
exp(−�V/ε), (2.7)

where

C̄ε = 1

2π
(2πε)−d/2

∫
[0,1]d

J (θ)
√|λs

1(θ)|
d+1∏
j=1

√
λm

j

N∏
j=d+2

√
λm

j

λs
j (θ)

dθ. (2.8)
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Here J (θ) is the Jacobian defined as

J (θ) =
√

det(∇γ (θ)(∇γ (θ))T ), (2.9)

λs
j (θ) represent the eigenvalues of Hs(γ (θ)) (the Hessian of V at γ (θ)), and as before λm

j

represent the eigenvalues of Hm (the Hessian of V at the minimum xm). We remark that

λs
1(θ) < 0 = λs

2(θ) = λs
3(θ) = · · · = λs

d+1(θ) < λs
d+2(θ) ≤ · · · ≤ λs

N(θ),

so that in particular, 0 is an eigenvalue with multiplicity d ≥ 1, the dimension of S.
We now derive (2.7) and (2.8) from (2.5).

Step 1. We begin by noticing that (2.5) is equivalent to

�ε = ( ¯̄Cε + o(ε−d/2)
)

exp(−�V/ε),

where

¯̄Cε = 1

2π

∫
RN exp

(− 1
2ε

〈x − Px,Hs∗ (P x)(x − Px)〉)dx∫
RN exp

(− 1
2ε

〈x,Hmx〉)dx
. (2.10)

Here the projection Px = γ (θ∗) is defined via

θ∗ := argmin
θ∈[0,1]d

dist(x, γ (θ)),

and the convexification Hs∗ is given by

〈x,H s
∗ (γ (θ))x〉 = 〈x,H s(γ (θ))x〉 + 1

2

(
|λs

1| +
1

|λs
1|

)
〈x, vs

1(θ)〉2, (2.11)

where vs
1(θ) represents the eigenvalue of Hs(γ (θ)) corresponding to λs

1(θ) < 0. (Notice that
Hs∗ is not strictly convex because of the zero eigenvalue.)

To see this, notice that in the denominator of (2.5), we have used the standard harmonic
approximation. In the numerator, on the other hand, we have observed that the dominant con-
tribution comes from points in ∂D within a small neighborhood of γ . Therefore we expand
locally around each point in γ , with the curvature of ∂D contributing only at higher order.
At the same time, we “add a dimension” and absorb the factor of |〈n̂(x),H(x)n̂(x)〉|1/2 by
convexifying Hs as in (2.11) and expanding in the direction perpendicular to ∂D. Finally,
as usual the leading order factor is unchanged when we enlarge from a small neighborhood
of γ to all of R

N .

Step 2. Now we remark that (2.10) can be reduced to (2.8). Indeed, the Gaussian integral
in the denominator of (2.10) can be evaluated explicitly:

∫
RN

exp

(
− 1

2ε
〈x,Hmx〉

)
dx = (2πε)N/2

∏N

j=1(λ
m
j )1/2

. (2.12)

The integral in the numerator, on the other hand, can be estimated using once again that
only the integration in a neighborhood of γ (θ) contributes at leading order and applying the
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Co-area Formula to evaluate the contribution. This gives:

lim
ε→0

ε(d−N)/2
∫

RN

exp

(
− 1

2ε
〈x − Px,Hs

∗ (P x)(x − Px)〉
)

dx

= lim
ε→0

ε(d−N)/2
∫

[0,1]d

∫
{Px=γ (θ)}

J (θ)

× exp

(
− 1

2ε
〈x − γ (θ),H s

∗ (γ (θ))(x − γ (θ))〉
)

dHN−d dθ

=
∫

[0,1]d
J (θ)(2π)(N−d)/2 |λs

1(θ)|1/2

∏N

j=d+2(λ
s
j (θ))1/2

dθ. (2.13)

Remark 3 In the particularly simple case with d = 1 and λs
j independent of θ , (2.8) becomes

C̄ε = 1

2π
(2πε)−1/2(|λs

1|λm
1 λm

2 )1/2
N∏

j=3

(λm
j /λs

j )
1/2

∫ 1

0
‖γ ′(θ)‖dθ, (2.14)

which agrees with [34, 35], and which will be relevant for us in the case of the SPDE (1.2).

Remark 4 Our assumptions on S can be relaxed. For instance, our arguments also apply
when Hs = Hs

ε has no zero eigenvalue, but has a small eigenvalue λs
1,ε that goes to zero so

quickly as ε → 0 that the harmonic approximation (2.6) breaks down. Then the saddle point
is isolated, but because the energy landscape is flat in the limit, the contribution of neigh-
boring points must also be taken into account. Although this example may seem contrived,
it will be relevant when we consider the SPDE (1.2). See Remark 5 for more.

2.2 Infinite Dimensional Setting

As mentioned earlier, (2.4) has been justified rigorously for N = ∞ in the nondegenerate
case, with a rate �ε of the correct exponential order [38]. We work under the assumption that
(2.4) remains valid with �ε given by (2.6) for N = ∞ in the nondegenerate case and by (2.8)
for N = ∞ in the degenerate case. This can be justified formally by interpreting (2.5) in
terms of functional integrals and proceeding as in Sect. 2.1. See also Remark 6.

Consider (1.2) for x ∈ [−�ε/2, �ε/2] with periodic boundary conditions. (Dirichlet
boundary conditions are discussed in Remark 5.) Recall that η is a space-time white noise
and V is an asymmetric double-well potential. Assume that the minima u− and u+ are such
that V (u−) > V (u+). Suppose that initially, u(·,0) = u−. An energy barrier separates this
state from the absolute minimizer u(·) = u+. We are interested in the mean time to exit the
basin of attraction D(u−) of the initial state.

Let us(·) denote a saddle point of least energy. It is a nonconstant, periodic solution of

−uxx + V ′(u) = 0 (2.15)

with minimal energy. Because of the periodic boundary conditions, there is not a unique
energy-minimizing saddle point, but rather a one-parameter family:

S := {w(θ) := us(· − θ), θ ∈ [−�ε/2, �ε/2]}.
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The eigenfunctions φs
k(· − θ) of the Hessian Hs(w(θ)) solve

−∂xxφ
s
k + V ′′(w(θ))φs

k = λs
k,

and can be chosen orthonormal with respect to the L2 inner product, i.e.,

〈φs
j (· − θ),φs

k(· − θ)〉 :=
∫ �ε

0
φs

j (x − θ)φs
k(x − θ) dx = δj,k.

Notice that the corresponding eigenvalues

λs
1 < 0 = λs

2 < λs
3 ≤ · · ·

are independent of θ . Moreover, it follows in the usual way that

φs
2(· − θ) = w′(θ)

‖w′(θ)‖L2((−�ε/2,�ε/2))

.

In this case (2.7) and (2.14) become

��ε
ε = (

C�ε
ε + o(ε−1/2)

)
exp(−�E�ε/ε) (2.16)

with

C�ε
ε = 1

2π
(2πε)−1/2(|λs

1|λm
1 λm

2 )1/2
∞∏

j=3

(λm
j /λs

j )
1/2

∫ �ε

0
‖w′(θ)‖L2((−�ε/2,�ε/2))dθ

= 1

2π
(2πε)−1/2(|λs

1|λm
1 λm

2 )1/2
∞∏

j=3

(λm
j /λs

j )
1/2�ε‖u′

s‖L2((−�ε/2,�ε/2)). (2.17)

For the convergence of the infinite product, we refer the reader to [37, 43, 44].

Remark 5 The same result holds for (1.2) subject to Dirichlet boundary conditions when the
system size satisfies

�ε � ln ε−1. (2.18)

Although in this case for any ε > 0 there is a unique energy-minimizing saddle point, the
harmonic approximation is valid only if

λmin

ε
� 1 as ε → 0, (2.19)

where λmin is the smallest positive eigenvalue of the Hessian at the saddle point. It is well-
known that λmin is exponentially small with respect to �ε ; hence, (2.19) is violated in the
case of (2.18).

Remark 6 In the nondegenerate case, (2.6) can be derived by interpreting (2.5) as an appro-
priate expectation with respect to a Gaussian process (or a ratio of partition functions) and
applying the results from [14]. Formally, (2.16) and (2.17) can be derived from (2.5) in the
infinite-dimensional degenerate case in a similar way, as a product of expectations. Using
expectations with respect to infinite dimensional Gaussian processes in order to estimate the
nucleation rate may provide an interesting alternative to function space integrals.
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3 Metastability in the SPDE Model

Consider stochastically-driven phase transformation in (1.2) with u(·,0) = u−. We will use
the term “nucleation” to mean passing through a critical nucleus (a least energy saddle point,
see (2.15)) and exiting the domain of attraction of u−. For a fixed system size � and ε → 0,
(1.2) satisfies the exponential law (2.4) with nucleation rate

�ε = (C + o(1)ε→0) exp(−�E�/ε), C = 1

2π

√|λs
1|λm

1

∞∏
j=2

√
λm

j

λs
j

.

When the system size Lε grows quickly as ε → 0, on the other hand, there is a competition
between the small size of the noise—meaning that nucleation is unlikely—and the large
size of the system—meaning that there are many possible places at which nucleation could
occur.

The asymmetry of the potential is important: Because of it, minimum-energy saddle
points on [−�/2, �/2] have a “critical radius” that converges to a finite limit as � → ∞.
Moreover, there is a deterministic mechanism driving the spread of u+: Traveling wave so-
lutions connecting u+ and u− spread with deterministic velocity ν ∝ [V ], where the poten-
tial jump is defined [V ] := V (u−) − V (u+). The finite critical radius means that nucleation
events are localized, so that nucleation in one subsystem has negligible effect on behavior
in neighboring subsystems. The traveling wave velocity, on the other hand, means that once
nucleation has occurred, the spread of the new phase is deterministically driven, which is a
great simplification.

3.1 Reduction to the Poisson Model in Large Systems

We propose partitioning the system into subsystems of length �ε where �ε is small enough
that the exponential law (2.4) and the nucleation rate estimate (2.16) are valid approxima-
tions, but large enough that nucleation events on neighboring subsystems are asymptotically
independent events. For validity of (2.4) and (2.16), the mean nucleation time should be large
compared to the deterministic relaxation time of the system. This condition is expressed:

(��ε
ε )−1 (|λs

1|λm
1 )1/2 � 1.

Because of (2.17), we therefore require ln�ε � ε−1. For independence, on the other hand,
the probability that there is no nucleation on [−�ε, �ε] should be asymptotically equal to the
product of the probability of no nucleation on [−�ε,0] and the probability of no nucleation
on [0, �ε]; because of (2.4), we therefore require

exp
(−T �2�ε

ε

) ≈ (
exp

(−T ��ε
ε

))2
,

which in light of (2.16) and (2.17) translates into

�E2�ε

ε
− �E�ε

ε
= o(1)ε→0. (3.1)

Because the energy barrier converges exponentially with respect to �ε , (3.1) is satisfied if
�ε � ln ε−1. Hence, we choose a subsystem size satisfying

ln ε−1 � �ε, ln�ε � ε−1.
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Using these heuristics, we define

L := Lε/(ε
1/4 exp(�E∞/2ε)), T := Tε/(ε

1/4 exp(�E∞/2ε))

and estimate:

lim
ε→0

P(no nucleation in [0,Lε] × [0, Tε])

= lim
ε→0

P(no nucleation in [0, �ε] for t ≤ Tε)
Lε/�ε

= lim
ε→0

exp
(−Tε�

�ε
ε

)Lε/�ε

= lim
ε→0

exp

(
−LεTε�

�ε
ε

�ε

)

= lim
ε→0

exp

(
− k LεTε√

ε exp(�E�ε/ε)

)

= exp(−k LT )

with

k = 1

(2π)3/2
(|λs

1|λm
1 λm

2 )1/2
∞∏

j=3

(λm
j /λs

j )
1/2‖u′

s‖L2(R).

Hence, under the space-time rescaling

x → x

ε1/4 exp(�E∞/2ε)
, t → t

ε1/4 exp(�E∞/2ε)
, (3.2)

we recover an exponential distribution of nucleation events

P(no nucleation on [0,L] × [0, T ]) = exp(−kLT ). (3.3)

The nucleation event looks like the generation of a single point of u = u+ in the rescaled
variables. Walls propagate from nucleation points with the deterministic velocity ν ∝ [V ].
(By rescaling space and time equally, the slope is preserved.) The lower envelope of the
graph divides the region of u = u− from the transformed region where u = u+. “Virtual
nucleation events” that fall above the lower envelope are rejected. (See Fig. 1 for an illustra-
tion.) This is the Poisson model, a simple version of a JMAK nucleation and growth model.

3.2 Dependence on System Size

The reduced model is useful to study the behavior of the SPDE in large systems. To compare
the behavior on small, medium, and large systems, we choose as an observable the percent
of transformed phase at time t :

R(t) := μ({x;u(x, t) = u+})
L

,

where μ(·) denotes Lebesgue measure. For simplicity, suppose that walls propagate with
velocity ν = 1.
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Fig. 1 The Poisson process with deterministic wall velocity. Nucleation events are points distributed in
space-time with a rate coming from large deviation theory and prefactor estimates. Walls emerge from point
nucleations with deterministically prescribed velocity. The lower envelope separates the untransformed region
from the transformed region. (“Virtual nucleations” above the lower envelope are rejected)

Small Systems. For L order one in ε, the standard large deviation picture holds [15, 23, 38].
The timescale for phase transformation is indicated by the mean switching rate:

�L
ε = C exp(−�EL/ε).

On the associated timescale, the switching probability is Poisson,

P (no switch for t ≤ T ) ≈ exp(−T �L
ε ).

The switching is “unpredictable,” in the sense that the mean and standard deviation are of
the same order. A single nucleation event is expected and the walls cover the system in an
order one time.

Medium Systems. The Poisson reduction suggests that for

L = O
(
ε1/4 exp(�E∞/2ε)

)
,

there is an order one probability of nucleation for the dramatically increased rate

�L
ε = ε1/4 exp(−�E∞/2ε).

(Dramatic because of the change by 1/2 in the exponential factor.) This is the “entropic
effect” of the system size. The event R(T ) = α depends on the distribution of nucleation
events within the box [0,L] × [0, T ].
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Fig. 2 The Poisson model and the jump process

Large Systems. For large systems

L � ε1/4 exp(�E∞/2ε),

the Law of Large Numbers (LLN) leads to deterministic limiting behavior. The JMAK
model [4, 11, 30, 31] allows one to quantify the effect. Recent work concerning LLN and
Central Limit Theorem (CLT) results for JMAK models includes [13, 29, 41]. In the simple
setting of the one-dimensional Poisson model with constant velocity and nucleation rate, it is
easy to capture the LLN behavior. Consider a random variable Z(s) : [0, S] → R

+ such that
Z propagates at a deterministic velocity c > 0, except for random times s ′ at which it jumps
down to a point z, uniformly distributed on [0,Z(s ′)]. For c = 1/2, there is a one-to-one cor-
respondence between the graph of this process and the lower envelope of the Poisson model,
under the transformation (x, t) = (s − z, z) (cf. Fig. 2). Furthermore, it is not hard to show
that the normalized probability density p(z, s) for Z(s) = z has the stationary distribution,

ps(z) = (z/
√

c) e−z2/2
√

c, z > 0.

Consequently, we have

lim
S→∞

|{s ∈ [0, S];Z(s) > α}|
S

=
∫ ∞

α

ps(z)dz.
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Transformed into the language of the Poisson model, we obtain

lim
L→∞

R(t ′) = 1 − e−t ′2/
√

2 a.s.,

so that in particular, the time at which half the system is transformed is

T1/2 = 21/4(ln 2)1/2,

almost surely as L → ∞.

4 Conclusion

We have proposed a methodology for studying rare events on large systems by breaking the
domain into subsystems of intermediate scale on which “classical” results such as switching
rate estimates and the exponential law can be applied. As an example, we have studied phase
transformation for a scalar, one-dimensional, reaction-diffusion equation with white noise
perturbation. We have drawn a connection between the large system limit of the SPDE and a
simple JMAK nucleation and growth model. The formal reduction motivates the conjecture:

Conjecture 1 There exists an ε-dependent rescaling of space and time and a random vari-
able ξ mapping � to sets of points in the plane such that for every δ > 0, T > 0, the rescaled
solution of (1.2) (call it ū(t, x,ω)) satisfies

P

(
sup

0≤t≤T

‖ū(t, ·,ω) − f (ξ(ω))‖L2 > δ

)
→
ε→0

0.

Fig. 3 A multi-well potential leads to a cascade of nucleations
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Here, f ({ai}∞
i=1) with ai ∈ R

2 is the function which is u− (resp. u+) below (resp. above) the
lower envelope of the curve that is created by extending rays of slope ±1 from each ai .

One possible generalization of the SPDE reduction studied here is to the case of an asym-
metric multi-well potential with infinitely many local minima, each with the same energy
barrier between the minimum and the saddle to the right. (See Fig. 3.) In this case, there is
a cascade of nucleations that generates “towers” whose heights grow without bound. The
reduced model in this case is the PNG model studied in [42]. They connect the statistics of
the height H(x, t) with the longest increasing subsequence of a random permutation with
Poisson distributed length, a quantity that is in turn connected to the largest eigenvalue of a
random matrix [1, 5].
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